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Preserving and Using Context Informationin Interprocess CommunicationLarry L. Peterson, Nick C. Buchholz, and Richard D. Schlichting1University of ArizonaWhen processes in a network communicate, the messages they exchange de�ne a partial orderingof externally visible events. While the signi�cance of this partial order in distributed computing iswell understood, it has not been made an explicit part of the communication substrate upon whichdistributed programs are implemented. This paper describes a new interprocess communicationmechanism, called Psync, that explicitly encodes this partial ordering with each message. The papershows how Psync can be e�ciently implemented on an unreliable communications network, and itdemonstrates how conversations serve as an elegant foundation for ordering messages exchanged ina distributed computation and for recovering from processor failures.1 IntroductionAn interprocess communication (IPC) mechanism provides an abstraction through which processesthat do not necessarily share an address space can exchange messages. While there exists consider-able experience with IPC mechanisms for one-to-one communication|examples of such mechanismsinclude datagrams, virtual circuits, remote procedure calls [5], and channels [11]|much less is un-derstood about IPC mechanisms for many-to-many communication. Work in this area includeslow-level broadcast protocols [7] and high-level programming toolkits [3,4].This paper introduces a new IPC protocol, called Psync (for "pseudosynchronous"), that sup-ports the exchange of messages among a well-de�ned set of processes. Psync explicitly preserves thepartial ordering of messages exchanged among a collection of processes in the presence of commu-nication and processor failures. Because of the fundamental nature of this partial order, Psync hasseveral desirable characteristics: it can be implemented on an unreliable network with performancecomparable to conventional one-to-one protocols like UDP [19] and TCP [28], it supports elegantimplementations of a wide range of existing communication protocols, it allows applications to di-rectly access information not made available by other IPC mechanisms, and it facilitates recoveryfrom processor failure.1Authors' address: Department of Computer Science, University of Arizona, Tucson, AZ 85721. Thiswork supported in part by National Science Foundation Grants DCR-8402090 and CCR-8701516, and AirForce O�ce of Scienti�c Research Grant AFOSR-84-0072.1
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Psync is a low-level protocol designed to support a variety of high-level protocols and distributedapplications. This design has two implications [23]. First, Psync makes very few assumptionsabout the underlying network. For example, it does not assume expensive mechanisms such asreliable broadcast are available. Second, Psync defers to higher-levels any functionality that notall applications need. In other words, Psync only maintains the partial order among messages; acollection of "library routines" enforce various ordering discipline using Psync.The paper is organized as follows. The next two sections describe Psync: Section 2 gives a for-mal de�nition of the abstraction upon which Psync is based and Section 3 describes an algorithmfor implementing Psync in a distributed system. By analogy with virtual circuits, we �rst de�nea FIFO queue and we then describe the sliding window protocol by which a queue can be imple-mented on two processors connected by an unreliable network. Section 4 then demonstrates severalapplications of Psync and Section 5 shows how Psync can be extended to support the reintegrationof failed processes into an ongoing conversation. Finally, Section 6 reports on the performance ofPsync, Section 7 comments on related work, and Section 8 o�ers some conclusions.2 AbstractionPsync is based on a conversation abstraction that provides a shared message space through whicha collection of processes exchange messages. The general form of this message space is de�ned by adirected acyclic graph that preserves the partial order of the exchanged messages. For the purposeof this section, we view a conversation as an abstract data type that is implemented in sharedmemory; Section 3 gives an algorithm for implementing a conversation in an unreliable network.A conversation behaves much like any connection-oriented IPC abstraction: A well-de�ned set ofprocesses|called participants|explicitly open a conversation, exchange messages through it, andclose the conversation. Only processes that have been identi�ed as participants may exchange mes-sage through the conversation, and this set is �xed for the duration of the conversation. Processesbegin a conversation with the operations:conv = active open(participant set)conv = passive open(pid)The �rst operation actively begins a conversation with the speci�ed set of participants. The opera-tion creates an empty conversation|i.e., one that contains no messages|and the invoking processis not blocked. The second operation passively begins a conversation. The argument identi�es2
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the invoking process. This process is blocked until some active process starts a conversation thatcontains the invoking process in its participant set. Pending conversations for a process|thosefor which the process has not invoked passive open|are queued on the passive open operation.The conv returned by the two operations can be thought of as an external handle for that process'view of the conversation. A process closes its view of a conversation with aclose(conv)operation.Once a process possesses a conv handle, it can send and receive messages using the operations:node = send(msg, conv)node, msg = receive(conv)where msg is an actual message|an untyped block of data|and node is a handle or capability forthat message. Each participant is able to receive all the messages sent by the other participantsin the conversation but it does not receive the messages it has sent. Fundamentally, each processsends a message in the context of those messages it has already sent or received. Informally, "inthe context of" de�nes a relation among the messages exchanged through the conversation. Thisrelation is represented in the form on a direct acyclic graph, called a context graph. The semanticsof send and receive are de�ned in terms of this graph.Formally, let P denote the set of participants in a conversation and let M denote the set ofmessages they exchange. Each element ofM encapsulates both the actual message and the sender'sidentity. De�ne � (read "precedes") to be a transitive relation on M , such that m � m0 if and onlyif message m0 is sent in the context of message m; i.e., the process that sent m0 had either sent mor already received m. Let G� denote the directed acyclic graph representation of �. A contextgraph, denoted G = (M;E), is taken to be the transitive reduction of G� [2]. That is, G containsall the vertices and none of the redundant edges of G�, where edge (m;m0) is redundant if G� alsocontains a path from m to m0 of length greater than one.Figure 1 gives G� and G for a conversation in which m1 was the initial message of the conver-sation; m2 and m3 were sent by processes that had received m1, but independent of each other; m4was sent by a process that had received m1 and m3, but not m2; and m5 was sent in the contextof all the other messages. We refer to the nodes to which a given message is attached in G as themessage's immediate predecessors. For example, m2 and m4 are the immediate predecessors of m5.3
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Also, two messages that are not in the context of the other are said to have been sent at the samelogical time. For example,m2 and m3 were sent at the same logical time.
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G< GFigure 1: Example Context GraphEach participant in a conversation has a view of the context graph that corresponds to thosemessages it has sent or received. Let Mp � M denote the subset of messages sent or received byparticipant p 2 P . Process p's view, denoted Vp, is a restriction of G to the vertices in Mp andthe edges in E incident upon those vertices. A process with a view equal to G has received all themessages sent by other participants. Messages outside the participant's view|i.e., those in the set(M �Mp)|are said to be outstanding. For example, at the time a participant sent m4, its viewconsisted of m1 and m3; m2 was outstanding.When process p invokes the receive operation, the "earliest" outstanding message is returned.Formally, receive returns an outstanding message m in G such that there is no other outstandingmessage m0 for which m0 � m. Also, Vp is extended to include m. The receive operation blocks ifthere are no outstanding messages. The abstraction has the important property that for any pairof messages m and m0 received by a process, m is received before message m0 if m � m0. Thus,when a process receives a given message, it is guaranteed to have already received all messagesthat precede it in the context graph. For example, (m1; m2; m3; m4; m5), (m1; m3; m2; m4; m5), and4
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(m1; m3; m4; m2; m5) are all valid total orderings for returning the messages in Figure 1, wheredi�erent participants might see a di�erent ordering.When process p applies the send operation to messagem,m is added toM and the edge (ml; m)is added to E for each node ml that is a leaf of Vp. Also, p's view is extended to include m, eventhough a participant never receives a message it sent. Note that the data structures that representa conversation include a single "shared" context graph and a "private" view for each participant.It is therefore accurate to think of the context graph as the principle data structure and each viewas a window on G. That is, while the leaves of Vp are used to determine how a message sent by pis inserted into the conversation, the message is attached to G, and as a consequence, available forthe other participants to receive.Notice that the send and receive operations modify the context graph in such a way that Gremains the transitive reduction of G�. Two conditions must be satis�ed for this to be true. First,it must be the case that a path from m1 to m2 in G implies m1 � m2. To see that this is the case,observe that a given process always receives message m before m0 if m � m0. As a consequence,the participant's view is always a connected subgraph of G, and it is therefore not possible to senda message in the context of one message that is not also in the context of all messages that precedeit in the graph. Second, it must be the case that the existence of a path of length greater than onefrom node m1 to node m2 implies that there cannot exist an edge from m1 to m2. To see that thisis the case, observe that each new message is attached to the leaves of the sending participant'sview. Because these nodes are leaves, there cannot also be a path through another node to the newnode.Also note that a message sent by a given process is, by de�nition, in the context of the previousmessage sent by that same process. Therefore, it is not possible to have an edge in G leadingfrom a given message to two or more messages sent by the same participant. Likewise, a givenmessage cannot have two or more immediate predecessors sent by the same participant. These twoobservations imply that the outdegree and indegree of any node in G is bounded by the number ofparticipating processes.The context graph contains information about which processes have received what messages.In particular, receipt of a message implies that the sender has seen all its predecessor messages.Thus, if some message m is followed in the context graph by a message from all the participantsexcept for m's sender, then m is necessarily in each participant's view. Formally, message mp sentby process p is said to be stable if for each participant q 6= p, there exists vertex mq in G sent by q,5
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such that mp � mq. Intuitively, each mq serves as an acknowledgement of mp from some process q.Because for a message to be stable implies that all processes other than the sender have receivedit, it follows that all future messages sent to the conversation must be in the context of the stablemessage; i.e., they cannot precede or be at the same logical time as the stable message.For example, suppose the context graph depicted in Figure 2 is associated with a conversationthat has three participants, denoted a, b and c, where a1; a2; : : : denotes the sequence of messagessent by process a, and so on. Messages a1, b1, and c1 are the only stable messages. Also, participanta has sent two unstable messages: a2 and a3.
c1 a2

a1

b1

a3b2

b3Figure 2: Another Example Context GraphBecause the context graph provides such useful information, the conversation abstraction sup-ports the following operations for traversing G and querying the state of nodes in G:node = root(conv): root vertex of Vp.node set = leaves(conv): set of leaf vertices of Vp.process id = sender(node): process that sent node.participant set = participants(conv): set of participating processes.node set = next(node): set of vertices to which there is an edge from node in Vp.node set = prev(node): set of vertices from which there is an edge to node in Vp.6
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outstanding(conv): true if Vp 6= G.precedes(node1, node2, conv): true if Vp contains a path from node1 to node2.stable(node, conv): true if node is stable.3 ProtocolThis section describes the Psync protocol (algorithm) that implements conversations in a distributedsystem. While more than one implementation strategy is possible|for example, sending andreceiving messages could be implemented as atomic transactions on replicated copies of the contextgraph|Psync replicates G throughout a network in a way that preserves the important propertiesof the conversation abstraction without incurring the high cost of atomic updates. Psync is designedthis way because it is intended to be a low-level IPC protocol upon which a wide range of othermechanisms can be built.To simplify the discussion, we describe the protocol in three stages. First, we present a basicprotocol that accommodates varying communication delays; this description assumes an in�niteamount of memory at each processor. Second, we augment the basic protocol to account fornetwork and host failures; this discussion also assumes in�nite memory. Finally, we remove thein�nite memory assumption by considering garbage collection and 
ow control. Throughout thediscussion, Psync uses internal identi�ers to denote the three basic objects: it assigns a network-wide unique cid to each conversation, it assigns a conversation-wide unique mid to each message,and it uses a network-dependent pid to identify each participant. For simplicity, we assume eachpid can be divided into a host part and a local part; i.e., it is possible to determine the host onwhich a process resides given its pid.3.1 Basic ProtocolWe begin by describing the implementation of a conversation on a set of hosts connected by anasynchronous message passing facility with varying communication delays between hosts. For thepurpose of this discussion, assume no network or host failures.7
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3.1.1 Distributed ImagesPsync maintains a copy of a conversation's context graph G at each of a set of hosts on which aparticipant in P resides. The copy of G on host h is called an image and is denoted Ih. Psyncat each host also maintains the view for each local participant. For simplicity, assume there is aone-to-one relationship between hosts and participants; i.e., there is a single image and a singleview at each host. While context graph G still exists in the abstract, in practice only the individualimages are implemented, and Psync only guarantees that the union of the Ih for all hosts h is equalto G given no host failures; it does not attempt to keep all the images equivalent. Messages in theabstract context graph G but not in some image Ih correspond to messages sent by some participantthat are still in transit to host h. Messages in Ih but not in the local participant's view correspondto messages that have arrived at host h but have not yet been received by the participant.3.1.2 Opening and Closing ConversationsThe active open operation creates an empty local image, but no messages are exchanged andthe invoking process is not blocked. The information necessary to establish the conversation atthose hosts on which a process invoked the passive open operation is piggybacked on the �rstmessage sent by the process that actively opened the conversation. The arrival of this messageat a given host initializes the local image, which in turn causes the local participant's invocationof passive open to complete. The format of a conversation's �rst message, called an SC (startconversation) message, is given in Figure 3; pid1 : : : pidn identi�es the participating processes (pid1is the message sender) and the message's mid is the same as the conversation's cid.
pid1...pidnSC cid messageFigure 3: Start Conversation MessagePsync exchanges no messages when a process closes a conversation. Therefore, it is possiblefor a process to close its view of a conversation before the other processes are �nished sendingmessages, implying that new messages may arrive later for that conversation. From the perspective8
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of the remaining processes, the process that closed the conversation too early will appear to havefailed (see Section 3.2). We expect applications for which such early closings are not acceptable toimplement a "termination agreement" protocol on top of Psync.3.1.3 Sending and Receiving MessagesWhen process p on host h invokes the send operation, the new message is attached to image Ihaccording to the de�nitions given in Section 2 and a copy of the message|along with informationspecifying the edges that connect the message to the context graph|is propagated to each remotehost. This message can be delivered using either a point-to-point delivery mechanism or a broadcastmechanism. When process p on host h executes the receive operation, an outstanding messagefrom Ih is returned. The receive operation blocks until Ih contains an outstanding message.The format of each message sent to an existing conversation, called an AN (add node) message,is given in Figure 4; each pred mid is the unique identi�er for one of the message's immediatepredecessors in the context graph and pidsender identi�es the sending participant. Note that thenumber of predecessor messages identi�ed in the message is bounded by the number of participantsin the conversation, corresponding to the bound on the indegree of each vertex. Each AN messagethat arrives at a host h for which the predecessor message set is present in Ih is immediatelyinserted in Ih. If one or more of the predecessor messages have not yet arrived, then the message isplaced in a holding queue until all the predecessors are present. Such messages are not consideredattached to Ih, and therefore cannot be returned by the receive operation. When all precedingmessages have arrived, the earlier message is removed from the holding queue and incorporatedinto Ih. Observe that each message in G is contained in at least its sender's image, even thoughthe multiple images of G are not equivalent while messages are in transit.
pred_mid1...pred_midn messageAN midcid pidsenderFigure 4: Add Node MessageFinally, note that the Psync operations that allow a process to inspect the context graph arede�ned relative to the participant's view and the local image, not in terms of the abstract graphG. For example, the stable operation reports on the stability of a message in a given participant's9
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view, where stability in Vp implies stability in G.3.2 FailuresImplementing conversations in a distributed environment is in practice complicated by three factors:the underlying network fails to deliver messages, hosts fail, and host failures are indistinguishablefrom network partitions and hosts that are slow to respond. This section extends the basic protocolto account for these factors. For the purpose of this section, we assume that when a host doesin fact fail, it remains failed for the duration of the conversation; techniques for recovering andreintegrating failed processes into an on-going conversation are described in Section 5.3.2.1 Transient Network FailuresConsider the possibility of transient network failures. Such failures imply that for a given messagesent from one host to another, zero or more copies of the message are delivered to the destinationhost. For the purpose of this discussion, assume hosts do not fail.Recall that Psync places any message received out-of-order in a holding queue until all messagesupon which it depends arrive. Let m be a message sent by a participant on host h in the contextof m0, and let h0 be a host that receives m but has not yet received m0; i.e., m is placed in theholding queue on h0. Psync associates a timer with each message in the holding queue. When thetimer for message m expires, a request to retransmit m0 is sent to h. That host is guaranteed tohave m0 in its image because a local participant just sent a message in the context of m0. This istrue even if the participant that originally sent m0 does not reside on h.The retransmission request, called an RR message, is schematically depicted in Figure 5. Be-cause it is possible that the predecessors' predecessors are also missing, the retransmission requestidenti�es the subgraph of G that needs to be retransmitted, not just the message(s) known to bemissing. The set of leaf mid's identify the current leaves of the local image and mid identi�esthe message whose predecessors are missing. The leaf set and the last received message e�ectivelyde�ne the boundary of the missing portion of G. When a host receives an RR message, it respondsby resending all messages between the leaf set and the out-of-order message, exclusive. If a mid isnot given, the host responds with all messages sent in the context of the leaf set. An empty leafset implies that the root node(s) should be retransmitted.10



www.manaraa.com

RR cid mid leaf_mid1...leaf_midnFigure 5: Retransmission Request Message3.2.2 Last ACK ProblemAlthough Psync automatically recovers from missing messages upon which some other messagedepends, it is possible for the last message sent|i.e., a message upon which no messages depend|to be lost. We characterize this as an instance of a general "last ACK problem" faced by manyprotocols. To help applications accommodate this possibility, Psync is augmented to allow itsblocking operations|passive open and receive|to include a timeout argument. The returncode then indicates whether the operation was successful or the timeout expired. Processes use atimeout larger than the maximum communication delay to and from all participating hosts.In addition, Psync provides aresend(node)operation. Applying this operation to a node causes an exact duplicate of the corresponding messageto be sent to all hosts maintaining an image of G. The resent version of the message is identical tothe original copy of the message|i.e., it is an SC or an AN message with the same mid|except forthat it is 
aged as having been resent. Should a host that receives a resent message already havea copy of the message, it (1) discards the duplicate copy, and (2) resends all the messages in itsimage that are immediate successors of the duplicate message. Finally, should a participant applyresend to a stable message, Psync does nothing; i.e., it does not resend the message as instructed.This is because resending a stable message is unnecessary: by de�nition, a stable message has beendelivered to all participants and a reply has been received from all participants.The resend operation is used by a process that has reason to believe a message it sent earlierwas never delivered; i.e., if it sent a message and timed-out while waiting for a reply message. Ageneralization of waiting for a reply message is to wait for a message to become stable. One cantherefore implement a "synchronous send" routine that does not return until the sent message hasstabilized. If the message does not stabilize because it was not delivered to all applications, then the11
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routine would resend it several times. Figure 6 de�nes a send stable routine as a library protocolimplemented on top of Psync. Note that if send stable returns FAILURE, the application is likely toconclude that one or more hosts have failed (see Section 3.2.4). Also note that send stable workscorrectly if one of the reply messages, as opposed to the sender's message, was lost. This is becauseif a host receives a duplicate copy of the resent message, it responds with all the messages thatimmediately depend on the resent message; i.e., Psync automatically resends the reply message.send stable(message, conv)f send node = send(message, conv);for (try=0; try<LIMIT; try++)f node, msg = receive(conv, timeout);while (outstanding(conv))node, msg = receive(conv, timeout);if (stable(send node))return(SUCCESS);else resend(node);greturn(FAILURE);g Figure 6: Library Routine for Sending a Stable Message3.2.3 Host FailuresNow consider the e�ect host failures have on the maintenance of the context graph. For thepurpose of this discussion, assume hosts fail silently without undergoing incorrect state transitionsor generating spurious messages; it is not necessary that such failures be accurately detectable.Psync guarantees two things about the context graph in the presence of host failures:� All running processes are able to continue exchanging messages.� A message contained in any running host's image will eventually be incorporated into everyrunning host's image if host failures are infrequent.The �rst condition is easy to guarantee because each process depends only on the local stateof the conversation. Thus, a participant can successfully invoke send because being able to send12
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a message depends only on the leaves of the participant's view. Also, a participant's ability tosuccessfully receive messages sent by another running process depends only on the host's abilityto incorporate new messages into the local image. The host, in turn, can always incorporatemessages received from another running host into its image because the only prerequisite for doingso is that all the predecessor messages be present. Should some of the predecessor messages not bepresent, the receiving host can retreive them from the sending host. The sending host is guaranteedto have all the preceding messages because it just sent a message that depends on them.The key to satisfying the second condition is to correctly deal with a host failing after it hassent a message. Psync addresses this problem with the following extension to the retransmissionrequest strategy de�ned in Section 3.2.1: When a host does not receive a response to an RR messagethat it sent to a particular host, it broadcasts the RR message to all the hosts. Should the broadcastRR message fail to yield the missing message, the message that triggered the retransmission requestis discarded. Given this extension to the protocol, consider how the second condition is satis�edfor two di�erent quanti�cations of "infrequent".First, assume a single host failure. Without loss of generality, suppose host h fails immediatelyafter sending message m in the context of message m0. There are three cases to consider.� Case 1: No other host receives m. Message m does not appear in any running host's image.� Case 2: All hosts receive m.{ Subcase a: No host has m0 in its image; thus, the broadcast RR fails. Neither messagesm0 nor m appear in any host's image. Note that m0 must have been sent from host h,otherwise at least one running host (the sending host) would have a copy of it.{ Subcase b: All hosts have m0 in their image. Messagem can be successfully incorporatedin each host's image.{ Subcase c: Some hosts have m0 in their image. Broadcasting the RR message will retrievem0 and both m and m0 will be incorporated into each host's image.� Case 3: Some hosts receive m. A host that receives m incorporates it into its image as incase 2. A host that does not receive m will at some future time receive message m00 in thecontext of m, causing the host to retreive m from the host that sent m00.Thus, the same set of messages are incorporated into all images when a single host fails.Second, suppose there are multiple host failures. Psync continues to incorporate messages intoall images unless there are "too many" failures, where "too many" is precisely quanti�ed as follows.A message m is de�ned to be n-stable if n-1 processes other than the sender of m have sent amessage in the context of m. For a message to be n-stable implies that a copy of m is contained in13
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at least n images, assuming a one-to-one correspondence between images and processes. Thus, acopy of m can be retrieved from some image in the presense of up to n-1 host failures. A messagethat is stable is contained in all images.Note that the preceding discussion does not assume perfect knowledge of when a particular hosthas failed; i.e., it can be implemented using a simple timeout and retry strategy. In the worst case,a given host might decide that another host is down when it is not, but this does not a�ect thecorrectness of the protocol. For example, suppose a host that receives m incorrectly decides thath is down. Sending the broadcast RR message is wasteful but not incorrect. As another example,suppose a host that receives m decides to ignore m0 and all the messages that depend on it (case2b), but some host that has a copy of m0 is still running. A new message will eventually arrivethat directly or indirectly depends on m0 and the recovery procedure outlined in Section 3.2.1 willbe exercised.3.2.4 Application-Level SupportFrom the application's perspective, host failure involves two issues: determining when a host hasfailed and deciding what to do about a failure. In the case of the �rst issue, Psync provides noexplicit mechanism for detecting host failures. Instead, each participant determines on its own thatsome other process has failed. For example, a given participant might decide that a host has failedbecause a routine like send stable returns FAILURE. In the case of the second issue, Psync allowsprocesses on any subset of running hosts to continue exchanging messages when one or more otherhosts have failed. Whether a given participant choses to stop executing or continue executing whenit detects a host failure depends on the application.For applications that chose to continue when processes fail, each participant must be ableto remove the failed process from its de�nition of the participant set. This is necessary so thatmessages will eventually stablize relative to the currently running set of participants. In otherwords, if the failed participant is not removed from the working de�nition of P , then messages willnever stabilize because a message from the failed participant will never arrive. Psync provides amask out(participant)operation for this purpose. A process invokes this operation to remove a participant from itsworking de�nition of P . Once a given participant has masked out some other participant p, Psyncignores (discards) all messages mp received from p unless it has in its holding queue a message mqfrom some participant q 6= p, such that mq is in the context of mp. An inverse operation,14
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mask in(participant)is provided to return a participant back into the local de�nition of P . Note that both opera-tions "mask" the participant set; they do not permanently delete existing participants or add newparticipants.Note that in practice it is impossible to determine with absolute certainty that a particularhost has failed; it may be slow to respond or it may be isolated by a network partition. This isa critical observation because it is possible for a process that is thought to have failed to startsending messages again. As a consequence, it is necessary for the running processes to be able toagree as to when a particular process has failed. While Psync does not provide a direct mechanismfor doing this, algorithms for agreement about failure have been developed [10] and they can beimplemented on top of Psync, analogous to the send stable routine. A more thorough descriptionof a delete protocol that speci�es the actions to be taken by functioning participants when anotherparticipant fails is presented elsewhere [18].3.3 Memory ManagementThe previous discussion implies that the entire history of a conversation is maintained throughoutthe lifetime of the conversation. While preserving some or all the history is necessary if failedprocesses are allowed to rejoin as described in Section 5, in many cases maintaining the entirecontext graph is unnecessary. This section outlines how to garbage collect portions of the contextgraph and how to implement 
ow control.It is useful to think of each node in an image as having two parts: an entry in the data structurethat implements the graph|this entry is a few dozen bytes long and contains the message sender,the message's id, pointers to other nodes, and so on|and a bu�er that holds the message itself. Inthe case of the actual message, the bu�er is reclaimed as soon as the corresponding node becomesstable. This is because a host cannot be asked to retransmit a message that is stable; such messagesare already contained in all images of G. In the case of the graph node, no simple rule exists. Thisis because an application process may inquire about any node in the graph; e.g., it may applythe msg sender operation to an arbitrary node. While reclaiming graph nodes is not as critical asreclaiming message bu�ers, some mechanism is necessary if conversations are to support arbitrarilymany messages. One solution is to provide a free node operation that explicitly causes a particularnode, along with all of its predecessors to be reclaimed. An application would invoke this operationwhenever it �nishes with a particular portion of the context graph. Another solution is let the15



www.manaraa.com

application set some threshold parameter �, such that the application is only permitted to invokeoperations on the last � messages sent to the conversation. This latter approach is practical becauseapplications can reasonablely chose a value for � that is proportional to the number of participantsin the conversation.In addition, Psync has three 
ow-control limitations. First, because it is possible for an appli-cation to send many messages without any of them becoming stable, Psync limits the amount ofbu�er space allocated to each conversation; the send operation blocks and newly arriving messagesare discarded if this limit is exceeded. Second, only a �xed number of pending conversations2 areallowed to queue for any single process, where only one message associated each such conversationis stored; all additional messages belonging to a pending conversation are discarded. Third, onlya �xed number of out-of-order messages are saved in each conversation's holding queue; additionalmessages are discarded. Note that in all three cases, newly arriving messages that exceed bu�erlimits are simply discarded since discarding a message is indistinguishable from a transient networkfailure. As a consequence, the mechanisms described in Section 3.2 are later used to recover themessages.3.4 RemarksPsync has been designed to include only that functionality essential to maintaining context infor-mation; all other functionality has been pushed onto higher-level protocols. For example, ratherthan support a send stable operation, we have built a library version of the operation on topof Psync. As another example, rather than support a conversation-wide operation for removinga failed processes, Psync provides only mask out and mask in operations that modify the localde�nition of P ; one can build conversation-wide remove process and add process routines ontop of Psync. Other useful library routines include a quorum stable routine that determines if amajority of processes have received and responded to a particular message, and initialize andterminate routines that employ a three-way handshake protocol to begin and end a conversation.The important point is that the list of useful library routines is both large and diverse. Becausedi�erent applications use di�erent combinations of these routines, we chose to implement them ontop of Psync rather than embed them in Psync. In other words, our design draws an explicit linebetween the mechanism that preserves ordering information and higher-level protocols that enforce2A pending conversation is one that has been actively opened but for which the local process has notinvoked a corresponding passive open. 16
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a particular ordering policy.4 Ordering MessagesThe context graph explicitly records the partial ordering of messages exchanged in a distributedcomputation. Participants enforce a particular ordering discipline on the context graph based onthe requirements of the application. This section gives several examples of how the context graphsupports elegant implementations of a variety of ordering policies. These policies can be thoughtof as "�lters" placed on top of Psync.4.1 Conventional ProtocolsPsync supports e�cient implementations of well-known communication protocols due to the fun-damental nature of the context relation. For example, the unreliable datagram corresponds to adegenerate context graph that contains a single vertex, a reliable datagram causes an acknowledge-ment message to be sent in the context of a datagram, and an RPC mechanism sends a resultmessage in the context of an request message and subsequent request messages in the context ofprevious reply messages. This section makes three observations about implementing conventionalprotocols on top Psync.First, while one could argue that it would be more e�cient to implement a virtual circuitprotocol or an RPC protocol directly on the underlying network rather than on top of Psync,it is nontheless interesting to observe that the context graph provides a useful mental tool forthinking about such protocols. Consider, for example, a virtual circuit protocol. The contextgraph that models a virtual circuit grows in a "nearly linear" manner, where the breadth of thegraph intuitively corresponds to the number of unstable messages sent by the local participant. Aprocess stops sending data when the number of unstable messages it has sent exceeds the size ofthe circuit's sliding window. Thus, a linear context graph would result if a stop-and-wait protocolis employed [27]. Moreover, as long as a both sides have data to send, the act of sending a messagein the context of received messages e�ectively acknowledges those messages, thereby providing anatural implementation of the piggyback optimization.Second, Psync o�ers an alternative IPC paradigm to applications that currently use whateverexisting IPC mechanism provides the "best �t", even if that mechanism does not provide exactlythe semantics that the application needs. Consider, for example, a distributed program that ex-17
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hibits an interactive communication pattern in which a client process sends a request message,a server process replies, the client responds to the server's reply, and so on. Such a pattern iscommonly called conversational continuity, and can be viewed as a generalization of the messagetransaction paradigm. The mail protocol SMTP is an example of an application that exhibitsconversational continuity [21]. Psync is an ideal communication substrate for the conversationalcontinuity paradigm because it maintains the desired connectivity from message to message withoutduplicating the e�orts of the application. In contrast, virtual circuits|the IPC mechanism conven-tionally used for such applications, including SMTP|send an acknowledgement message for eachapplication message, even though the application level response sent in the context of the requestmessage is su�cient acknowledgement. While virtual circuits protocols are usually optimized topiggyback acknowledgements, such optimizations are a heuristic because the virtual circuit proto-col has no knowledge of when or if the application will send its next message. Also, opening andclosing a virtual circuit causes overhead messages to be exchanged even though the application isable to determine, based on its own state and the last message sent from the other process, thatno more messages will be exchanged and the conversation can be safely closed.Third, because Psync supports a many-to-many communication paradigm, its behavior is subtlydi�erent from conventional one-to-one protocols that have be augmented to support one-to-many(multicast) communication. Consider, for example, a simple message transaction in which a clientsends a request message to a collection of servers, and one or more of the servers receive therequest and sends a reply message [8]. Because Psync distributes all messages to all participants,the servers will receive each others reply messages. In contrast, only the client receives the replymessages in the case of a multicast. The former mechanism is desirable if a server is able to avoiddoing unnecessary work because it can detect that another server has already responded.4.2 Ordered BroadcastAs an example of how Psync provides an elegant base for implementing various ordering disciplinesin a many-to-many communication paradigm, consider the following implementation of orderedbroadcast. Such a broadcast ensures messages sent in a many-to-many communication are receivedby all participating processes in the same order. Ordered broadcasts are commonly used by a setof processes that are applying operations to a set of replicated data objects, where operations areencapsulated in messages. Because each process receives the messages (processes the operations)in the same order, they are able to maintain consistent copies of the object.18



www.manaraa.com

One typical implementation of an ordered broadcast is to assign a timestamp from a virtualclock to each message when the message is sent. The receivers then order the messages based onthe timestamps. In contrast, Psync supports a partial ordering that can be used to give a totalordering if all participants do the same topological sort of the context graph. The topological sortmust be incremental in the sense that each process waits for a portion of its view to stabilize beforeallowing the sort to proceed. This must be done to ensure that no future messages sent to theconversation will invalidate the total ordering. For simplicity, the following discussion distinguishesbetween the process that directly uses the context graph to implement the ordered broadcast (calledthe participant) and the application process that expects a total ordering of messages (called theapplication).As schematically depicted in Figure 7, each participant's view is conceptually partitioned intocommitted and uncommitted subgraphs, denoted V cp and V up , respectively. Dotted lines denote apath between two message nodes. Subgraph V cp corresponds to those messages that have beentotally ordered and committed to the application. (Messages in V cp would also satisfy the de�nitionof queue stability [23].) Subgraph V up corresponds to the set of messages yet to be considered. Eachiteration of the incremental topological sort moves through Vp in waves, where a wave is a maximalset of messages sent at the same logical time; i.e., the context relation does not hold between anypair of messages in a wave. As soon as the wave is known to be complete|i.e., the participantis certain that no future messages will arrive that belong to the wave|the messages in the waveare ordered according to some deterministic sorting algorithm and passed to the application. Themessages in the wave are also moved from V up to V cp . Note that de�ning a wave to be the roots ofV up results in a breadth �rst traversal of the context graph.3The important remaining problem is determining when all possible roots of V up are present.Recall that when a message is stable, all future messages must follow it in the context graph. Thus,a single stable message in a given wave implies that all possible members of the wave are containedin the participant's view. In other words, as soon as a single root of V up becomes stable, all theroots of V up can be sorted and committed to the application. In contrast, consider both a weakerand stronger condition for committing. On the one hand, it is not correct to commit a messageas soon as it becomes stable. This is because the order in which messages become stable in twodi�erent views may di�er due to varying communication delays, thereby resulting in potentially3An alternative is to do a depth �rst traversal, in which case the entire disjoint branch of the contextgraph rooted at each node in the wave is committed in order.19
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uFigure 7: Committed and Uncommitted Partitions of Vpdi�erent total orderings. On the other hand, it is not necessary to wait for all messages in the waveto become stable before committing the wave; a single stable message in the wave is su�cient.Figure 8 gives the procedure broadcast that implements the algorithm just described. Theprocedure interfaces with the application process by a pair of message queues and the operationssnd to queue and rcv from queue. A wait input operation is used to allow the process to blockwaiting for input from multiple sources. To simplify the presentation, procedure broadcast doesnot include any error recovery code.broadcast()f conv, last wave = initialize();while (TRUE)f snd something = FALSE;rcv something = FALSE;current wave = ;;for (each node 2 last wave)current wave = current wave S next(node);if (9 node 2 current wave, s.t. stable(node, conv))f last wave = current wave;sort(current wave);for (each node 2 current wave)20
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snd to queue(msgnode);gwait input();while (outstanding(conv))f node,msg = receive(conv);rcv something = TRUE;gwhile (!empty(snd queue))f msg = rcv from queue();send(msg, conv);snd something = TRUE;gif (!snd something && rcv something)send(ACK, conv);gg Figure 8: Ordered Broadcast ProcedureAt the heart of the procedure are the two node sets last wave and current wave, correspondingto the leaves of V cp and the roots of V up , respectively. When started, the procedure �rst calls aninitialize routine similar to the one mentioned in Section 3.4. This routine also initializeslast wave. Next comes the algorithm's main loop. First, it adds all the known dependents of thenodes in last wave to current wave. Second, it checks to see if any of the nodes in current waveare stable. If any are, current wave is assigned to last wave, the sort routine is called to orderthe messages in current wave, and the sorted messages are sent to the application. Assume thesort routine weeds out any messages in current wave that are not meant for the application|e.g.,ACK messages|but it does not �lter messages sent by the local process. The same sort routinemust be applied by all participants; for example, it might sort the messages based on the sender'sid. If none of the messages are stable, then the algorithm waits for new messages to arrive andchecks the stability of current wave the next time around the loop. Finally, any new input thathas arrived is processed at the bottom of the main loop. Note that rcv from queue is invoked afterreceiving any outstanding messages from the conversation. This causes any new messages sent toacknowledge all the received messages. An explicit acknowledgement is sent only if a message isreceived but none are sent. 21
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4.3 Replicated ObjectsAlthough the total ordering of messages guaranteed by an ordered broadcast mechanism providesa foundation for synchronizing distributed computations, there are certain cases in which the sametotal ordering is not necessary at each host [13]. Suppose, for example, that a data object isreplicated at n hosts, where a process running at each host manages the local copy. Furthermore,suppose that some of the operations that may be applied to the object are commutative withrespect to other invocations of the same operation. In this scenario, the n processes can participatein a single conversation and implement operations on the data object by sending messages tothe conversation. The partial ordering of messages (operations) preserved in the context graph issu�cient for ordering the commutative operations. The processes only have to synchronize witheach other on the non-commutative operations, which they do by waiting for the correspondingmessage to become stable in the context graph. A detailed description of an algorithm that employsthis idea is presented elsewhere [18].To see how an ordering policy might take advantage of commutative operations, consider anobject that supports operations � and and �, where multiple invocations of � can be executed inan arbitrary order with respect to each other. For example, � might insert an element into a setand � might perform some computation on the set and then clear the set. Because one is usuallyinterested in applying the operations in an order that is consistent with the order in which theoperations are invoked, the ordering policy is similar to the one given for the ordered broadcast inSection 4.2; that is, it moves through each participant's view in waves. The key di�erence is thatwe can gain additional concurrency by not waiting for the wave to be complete before executingsome of the operations in the wave.Consider the three graphs in Figure 9, where each message is denoted by the operation itrepresents and the previous operations that have been executed are omitted. Dotted lines denotea path between two message nodes. In (a), the current wave contains �ve operations that wereinvoked at the same logical time. Assuming the ordering policy gives preference to � operationsover � operations, the local participant can execute all the � operations in any order before knowingthat the wave is complete; i.e., before any message in the wave becomes stable. Once the wave iscomplete and all the � operations have been executed, the � operations can be sorted and executedserially. In general, it is possible for one or more other participants to not receive the � operationsin the wave for some time, and for those participants to continue to invoke � operations, as depictedin (b). In this case, as long as those � operations do not depend on a � operation that has not yet22
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been executed, the local participant may continue to execute the � operations. Notice that newlyarriving � operations continue to be executed even after a � operation is present in the local view.Finally, (c) shows the the condition that terminate the set of � operations: Each participant has a� operation is its view that has not been executed. Once this happens, all future operations sent tothe conversation by that participant must be in the context of the � operation, and therefore mustfollow it in the total order of operations executed by that participant. The example illustrates twopossible scenarios: a participant sends a � operation or it sends an � operation in the context ofsome other participant's � operation.
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(a) (b) (c)Figure 9: Example Operation Invocations5 Reintegrating Failed ParticipantsWhen a processor fails, one or more participants may depart from an on-going conversation. Sec-tion 3 describes the Psync mechanisms that can be used to accommodate situations where theparticipants remain failed for the duration of the conversation. Although this situation is common,there are also cases where it is necessary for a participant to recover and rejoin a conversation. Forexample, the two-phase commit protocol used to maintain consistency between copies of a replicateddatabase despite failures requires that the processes implementing the protocol recover to guaranteethat changes to the database are applied to all copies [12].Although the speci�cs of participant reintegration are highly application dependent, there aregenerally two tasks that must be accomplished before normal processing can continue. First, thefunctioning participants must be noti�ed that the failed participant wants to be reintegrated into23
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the conversation. This noti�cation facilitates the execution of an application-level join protocol,the inverse of the delete protocol mentioned in Section 3.2.4. The join protocol typically causeseach functioning participant to return the recovering participant into its active participant set byinvoking the mask in operation. One example of such a protocol can be found in [18].Second, an appropriate internal state of the participant must be restored. This state includesthe application's local variables, the local image of the context graph, and the participant's viewof the conversation. One common way to facilitate the restoration of the local variables is for theparticipant to checkpoint them onto non-volatile storage; the participant then reads the checkpointupon host restart. Psync is responsible for restoring the local image. The application and Psyncshare responsibility for restoring the participant's view.This section describes Psync support for participant reintegration. It �rst focuses on supportprovided for checkpoint-based techniques. It then discusses an alternative in which the internalstate of the participant is recreated by rebuilding the local context graph image and reexecutingthe process from its initial state.5.1 Using CheckpointsRecovery schemes that use checkpoints depend on the participant periodically writing its state tonon-volatile storage. Following a failure, the participant reads this saved state to recover its localvariables. It then executes the Psync restart operation to initiate recovery of the context graph.The form of this operation is as follows:conv = restart(cid, pid, participant set, leaf mid set)Analogous to active open, restart returns a handle for the conversation. The �rst argumentis the system-wide unique identi�er (cid) for the conversation, the second argument identi�es theinvoking participant, the third argument identi�es the conversation's participant set, and the fourthargument gives the conversation-wide unique identi�ers (mids) for the set of messages that are toform the leaves of the participant's view of the context graph upon recovery. Specifying the viewis important because it de�nes the point at which the process starts receiving new messages. Therestart operation is issued by a recovering participant in lieu of the standard operations foropening a new conversation. For example, it might be used in recovery code that is executedimmediately upon processor restart instead of some standard prologue code charged with opening�les and establishing conversations on the initial execution.24
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The values used as arguments to restart are typically included in the checkpoint so thatthey will be available following a failure. Psync provides operations that allow the applicationto retrieve the values into local variables. The participant set is retrieved by the participantsoperation described in Section 2. The cid andmids are retrieved using the following two operationscid = get cid(conv)mid set = get mids(node set, conv)respectively. The node set given as an argument to get mids is the collection of nodes for whichidenti�ers are desired; i.e., the set of messages the process wants to form the leaves of its viewupon recovery. The related issues of which mids to include in the checkpoint and when checkpointsshould be taken are addressed below.The restart operation serves two purposes: to inform other participants that the invokingparticipant has restarted, and to initiate reconstruction of the local image of the context graph.Psync accomplishes this by sending a special RS (restart) message to all hosts on which a participantresides. The form of an RS message is shown in Figure 10. The cid �eld is the identi�er for theconversation and the pid �eld identi�es the invoking participant; both are given as an argument torestart.
pidRS cidFigure 10: An RS MessageWhen an RS message is received at a host, the local instance of Psync performs two actions.First, it noti�es the local participant of the restart event; this is implemented as an out-of-bandcontrol message that is delivered to the local participant. As outlined above, this noti�cation usuallyresults in the local participant returning the recovering participant to its active participant set usingthe mask in operation. The noti�ed process might also initiate the execution of an application-leveljoin protocol.Second, the local instance of Psync transmits the messages that make up the leaves of its contextgraph image to the participant that sent the restart message; these messages are sent as standard25
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AN messages. As these messages are received at the restarting host, the local instance of Psyncreconstructs the lost context graph image according to the standard lost message protocol describedin Section 3.2. That is, upon receipt of the �rst retransmitted messages m, Psync transmits an RRto the sender of m requesting the contents of the graph from the root to the node representing m.Should that request fail, the request is broadcast to all participants. Portions of the graph that arenot in the context of m (e.g., siblings of m) are retrieved as required to �ll in missing context ofother messages as additional messages arrive from other hosts. Note that this procedure recoversthe host's image of the context graph. Once the image has been recovered, the local participant'sview is trivially reestablished according as speci�ed by the set of mids given as an argument torestart.It is possible, given additional failures, that the entire graph will not be retrieved even whenthe request is broadcast. De�ne the failure period of a participant to be the time period beginningat the time of the failure and ending at the point when the participant's state and view have beenreconstructed. If the failure period of n � 1 other participants overlap with the failure period ofa recovering participant p, it can be guaranteed only that the portion of the graph from the rootto the lowest n-stable messages will be available upon recovery.4 To see this, consider such ann-stable message ms. Since ms is in the context of messages sent by n� 1 participants in additionto the participant that sent ms, at least n context graph images will contain all messages from theroot to ms. Given that only n� 1 participants have overlapping failure periods, one of the imagescontaining that portion of the graph is assured to be available. It is worth emphasizing that theabove is a worst-case scenario; it is possible that messages below ms in the context graph will beretrieved, depending on exactly which participants fail when.As described so far, the recovering host depends entirely on the retransmission of messages fromother hosts to reconstruct its image. In fact, each host is able to reduce its dependency on theother hosts by saving a copy of the messages in its image to non-volatile storage. Thus, a restartinghost �rst directly recovers a portion of its image from non-volatile storage, and then "falls back"on the above procedure to recover the rest of the image. An appealing aspect of this scheme isthat the changes to the image on non-volatile storage can be performed asynchronously. There isno requirement that the volatile and non-volatile images be updated atomically or even that thechanges to the non-volatile copy keep pace with changes to the copy in volatile memory. Uponrecovery, those portions not available in non-volatile storage can be retrieved from other images4This discussion assumes a one-to-one correspondence between images and participants.26
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as described above. Moreover, because a given host might be asked to retransmit an early partof its context to a recovering host, it cannot free stable messages as described in Section 3.3. Inother words, the garbage collection mechanism must be modi�ed to write messages to non-volatilestorage rather than free them.On a related topic, the copy of the context graph on non-volatile storage need not be allowedto grow in�nitely large. Two things can be done to limit the size of a context graph. First, Psynccan easily be extended to allow participants to explicitly free portions of the graph. Second, theparticipants in a conversation can reach agreement to close the current conversation and start anew conversation.Finally, consider the issue of which message identi�ers should be saved for later use in therestart operation and the related question of checkpoint frequency. To a large degree, the answersdepend on how much reexecution, if any, the application can tolerate. This results from the factthat messages in the context graph between the nodes saved in the checkpoint and the leaves atthe time of the failure will be rereceived|and presumably reprocessed|following recovery. Oneconservative strategy would be to take a checkpoint following each message transmission. At thispoint, there is only one leaf in the view, minimizing the number of message identi�ers that must besaved on non-volatile storage. Also, since any additional state transitions made by the participantprior to a failure cannot have had any external e�ect, it is usually straightforward for an applicationto reexecute that portion of the computation. A less conservative strategy is discussed in the nextsection.5.2 Using Participant ReexecutionAs noted above, a typical recovery scenario involves having the participant start executing at themost recent checkpoint, with messages being received again and reprocessed if they arrived afterthe checkpoint but prior to the failure. It is possible to carry this notion of reexecution to its logicalconclusion by reexecuting the failed participant from its initial state, thereby avoiding the need tocheckpoint altogether. If the same sequence of messages is used as input, this technique will, undercertain assumptions, reestablish the same state and conversation view as existed when the failureoccurred. As detailed below, Psync provides an attractive and automatic alternative for achievingthe same functionality. Not only does the context graph encapsulate the entire communicationhistory of the recovering process, but its realization as a collection of replicated images allowsrecovery of messages despite multiple host failures. We note in passing that similar functionality27
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has been implemented elsewhere by logging messages onto non-volatile storage as they are received[24], logging them at a monitor site [22], or by retaining copies of messages in the volatile storageof sending processes [15,16,25].There are two conditions that must be satis�ed to guarantee recreation of the appropriate stateand view. One is that each participant in a conversation must be deterministic. For our purposes,this means that a process's state transitions and generated messages (i.e., its output) are determinedsolely by the sequence of messages it receives (i.e., its input). This assumption is satis�ed by mostapplications.The second condition is that sequence of messages received during reexecution of a participantmust be exactly the same as the sequence received during its original execution. In other words, thesame total ordering of messages must by presented to the application during the two executions.Since the context graph only directly preserves the appropriate partial ordering of messages, anapplication must impose an ordering �lter on the conversation, e.g., the ordered broadcast �lterdescribed in Section 4.2. In general, any �lter that preserves the total ordering at a given participantin subsequent executions is su�cient. The use of ordered broadcast is actually slightly strongerthan necessary since it guarantees an identical total ordering at all participants.The restart operation described above also serves as the mechanism to initiate message replay.This is achieved by specifying a null value for the leaf mid set argument to restart. Wheninvoked in this manner, the local image of the context graph will be reconstructed exactly asdescribed above, but the participant's view will be reinitialized to the empty graph. In otherwords, the participant will begin receiving messages again starting at the root of the graph.Following completion of restart, the participant reestablishes its internal state and conversa-tion view by simply executing normally. Messages sent by the application that are already in thecontext graph are suppressed at the sending host. This suppression is actually an optimization.If Psync assigns the same identi�ers to messages during reexecution that it did during the initialexecution, then the messages can be sent because they are automatically discarded as duplicatesat the receiving host.6 PerformanceWe have implemented Psync in the x-kernel: an operating system kernel designed to facilitateexperimentation with network protocols [14]. The implementation corresponds to the protocol28
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described in Section 3; it does not currently support the reintegration of failed processes as describedin Section 5. The implementation is both substantial and robust: it allows processes on the samehost to share a conversation, it has supported conversations with tens of thousands of messages,and it has successfully recovered from signi�cant rates of packet loss. By implementing Psync inthe x-kernel, we have been able to evaluate it under conditions that match its intended role as alow-level IPC mechanism, and in particular, we have been able to make meaningful performancecomparisons with other kernel-based protocols. This section reports on the performance of Psyncand comments on several implementation details that a�ect its performance.6.1 ExperimentsThe �rst set of experiments involve measuring the round trip delay for Psync, as well as threeother IPC protocols: an unreliable datagram protocol (UDP), a remote procedure call protocol [1],and a virtual circuit protocol (TCP). Note that although Psync supports communication amongmore than two processes, experimenting with Psync in the one-to-one case is a good measure ofthe overhead it imposes on sending and receiving messages.For the purpose of the experiments, the x-kernel was con�gured as follows: one-byte messageswere exchanged between a pair of user processes, all four protocols were implemented on top of IP[20], and the tests were run on a pair of Sun 3/75s connected by a lightly loaded 10Mbs ethernet.The results are presented in Table 1. The numbers were derived by running each experiment for10,000 round trips (20,000 total messages) and reporting the elapsed time every 1,000 round trips.Each of these measurements was then divided by 1,000 to produce an average round trip delay.Although we do not report the standard deviation of the various samples, they were observed tobe small. Protocol LatencyUDP 2.9 msRPC 3.4 msPsync 4.0 msTCP 4.6 msTable 1: Comparing Psync with other ProtocolsPsync's round trip delay of 4.0 msec is what one would expected: it falls between a trivialprotocol (UDP) and a rather complex protocol (TCP). That Psync has lower latency than TCP is29



www.manaraa.com

encouraging. It means that Pysnc is a viable alternative protocol for one-to-one communication,especially considering that there is no overhead involved in starting a conversation. However, thatPsync has a greater latency than RPC is disappointing. One (correctable) factor that we believecontributes to Psync's greater latency is that it incurs a moderate amount of overhead for allowingmultiple processes on the same host to participate in a given conversation.A second set of experiments measure Psync's performance with more than two participants. Theexperiments involve running an application program that passes a token among a set of processesthat exeucte on di�erent hosts. For comparative purposes, we implemented the same applicationprogram on top of TCP. In the TCP case, each process establishes a distinct virtual circuit toeach of the other processes. Thus, each time an application process sends a message, it actuallysends a copy of the message to all of the other participants using each of these circuits. To makethe experiment fair, we con�gured Psync to use point-to-point message passing rather than takeadvantage of the ethernet's broadcast facility. That is, whenever an application process sends aPsync message, Psync in turn sends an IP datagram to each of the participating hosts.The results are given in Table 2. The numbers were derived by allowing each applicationprocess to send and receive 20,000 messages, with each process reporting the elapsed time every1,000 messages. Each of these measurements was then divided by 1,000 to produce the averagedelay per message. As in the �rst set of experiments, the variation in the elapsed times was observedto be small. Note that in the case of two participants, the token-passing application program isequivalent to the round trip program used in the �rst set of experiments. However, the timesreported in Table 1 are twice those reported in Table 2. This is because the Table 1 times are basedon 1,000 round trips (2,000 messages), while the Table 2 times are based on 1,000 messages.Hosts Psync TCP2 2.0 ms 2.3 ms4 3.0 ms 3.6 ms6 3.8 ms 4.8 ms8 4.5 ms 7.0 msTable 2: Token Passing with Many HostsFirst, observe that Psync continues to perform well as more and more participants (hosts) areadded to a conversation. Of particular importance is the fact that the incremental cost for eachadditional process is less for Psync than it is for TCP. This is the case even though Psync provides30
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a more powerful abstraction: it preserves the relationship among messages from all participants,whereas TCP provides no information about messages that arrive on di�erent virtual circuits.Second, observe that TCP's performance grows unexpectedly worse in the eight host case.This performance drop is a result of a measurable increase in the rate at which packets were lost.Speci�cally, because we were sending point-to-point messages, the load on the ethernet becamesubstantial as additional hosts were added to the experiment. This heavy load, in turn, exposeda timing bug in the ethernet driver that caused packets to be dropped. Both Psync and TCPexperienced negligible packet loss in the 2- and 4-host cases, 1 in 1000 messages were lost in the6-host case, and 1 in 150 messages were lost in the 8-host case. TCP's performance su�ers morefrom message loss than does Psync's because for every lost message, TCP has to wait for a timer toexpire before it can request a retransmission, whereas Psync is able to request the retransmission assoon fas a message from another participant arrives that is in the context of the missing message.6.2 Implementation IssuesThe data structures and algorithms used to implement the context graph are tuned for the sendand receive operations. Speci�cally, a hash table is used to map message identi�ers (mids) intothe corresponding graph nodes, and a list of pointers to the leaf nodes of a view is maintainedfor each participant. This means that both send and receive can be implemented in lineartime proportional to the number of participants in the conversation|i.e., the upper bound on theindegree/outdegree of each node|but independent of the size of the graph. Also, because Psyncpiggybacks the conversation establishment information on the �rst data message and no terminationmessages are exchanged, the cost to begin and end a conversation is negligible.The current implementation can be con�gured to use either host-speci�c addresses or broadcastaddresses. In the former case, a given Psync message is sent to each unique host on which aparticipant resides. In the latter case, a single Psync message is broadcast to all hosts. For thepurpose of the experiments, host-speci�c addresses where used so as to facilitate a fair comparisonwith TCP. On a related note, while Psync's active open operation is described as taking a setof participant ids as an argument, it could just as well take a single group id instead. To doso, however, the membership of the group must remain constant throughout the lifetime of theconversation and it must be possible to expand the group id into a set of individual process ids ateach host. This is because Psync must be able to enumerate all the participants in the conversationin order to implement the stable operation. 31
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Finally, because it is desirable to encapsulate what the application views as a logical messagein a single Psync message, Psync uses an underlying blast protocol to send large messages. Theinteresting aspect of this blast mechanism is that it is encapsulated as a distinct protocol ratherthan embedded in Psync [1].7 Related WorkRecent work on interprocess communication has explored several dimensions of the problem space,including support for group communication [8], the exchange of very large messages [9,29], alter-native send/receive semantics [6], guaranteeing a consistent order on message delivery in a many-to-many communication [3,4], and techniques for logging messages so as to facilitate recovery fromprocessor failure [15,16,22,24,25]. The work presented in this paper addresses the latter two issues.Psync is most closely related to the ISIS protocol suite|ABCAST (atomic broadcast), CBCAST(causal broadcast), and GBCAST (group broadcast) [3,4]. From Psync's perspective, ABCAST andCBCAST are speci�c message ordering disciplines that can be implemented on top of the contextgraph: ABCAST supports a total ordering of messages similar to the ordered broadcast mechanismdescribed in Section 4.2, and CBCAST supports the same partial ordering as Psync. In fact, Psynccan be viewed as an optimistic implementation of CBCAST. This is because Psync only transmitsthe messages from the context of a given message when the context messages are missing at a givenimage. In contrast, the original implementation of CBCAST sent a su�cient set of predecessormessages (rather than just message ids) along with each message. This technique was furtheroptimized so that unnecessary messages would not be piggybacked on a given message wheneverthe sending host had direct knowledge that it (as opposed to some other host) had already sentthose messages. CBCAST is currently being re-implemented to more closely adhere to the protocoldescribed in Section 3.A more important di�erence is that CBCAST does not explicitly preserve the context graphand make it available to the application. Thus, it would not be possible to implement ABCASTon top of CBCAST in the same way one can implement an ordered broadcast on top of Psync.Also, instead of being able to use a single protocol (i.e., Psync) to implement the replicated objectapplication outlined in Section 4.3, the application would have to use a combination of ABCASTand CBCAST.Also, because ISIS is designed to be used directly by application programs, it provides fun-32
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tionality not directly available in Psync. For example, the ISIS protocols provide elaborate failuredetection and group management support, whereas Psync o�-loads much of this functionality tolibrary protocols. In fact, much of the complexity of GBCAST is concerned with inserting processfailure and group join events into ABCAST and CBCAST message ordering in a consistent way.In other words, ISIS is designed to subsume a large amount of functionality in a single package,whereas Psync is explicitly designed to provide only the necessary support for maintaining theordering among messages; library protocols take advantage of this ordering to implement variouslevels of service.In addition to ordering messages, the context graph very naturally lends itself to preserving thehistory of messages exchanged in a distributed application. Similar to message logging systems,Psync records the message history across multiple machines; i.e, each host's image preserves aportion of the context graph. It is also the case that the cost of logging messages in Psync does notimpact the performance of the application when there are no failures. This is because messages canbe written to non-volatile storage asynchronously; the non-volatile copy of the context graph neednot be kept identical to the volatile copy. Psync di�ers from message logging systems in that itintegrates the logging of messages with the preservation of a meaningful ordering among messages.That is, whereas logging systems generally augment an existing many-to-many communicationprotocol, logging in Psync is an automatic by-product of maintaining the context graph.Finally, note that many of the ideas underlying Psync are founded in the space-time view ofdistributed computing. For example, the context relation can be viewed as a variation of thehappened before relation [17]. As another example, when a message is stable, it is as if it has beenfully acknowledged [26], that is, an acknowledgement message from all other participants has beenreceived.8 ConclusionsOne of the most di�cult issues facing designers of distributed systems is the level at which thetiming and message ordering problem should be addressed: within the communication system orby the application. The underlying thesis of this paper is that the mechanism that preserves timinginformation should be implemented within the communication system but the policy that dictateshow the timing information is used to enforce various synchronization constraints belongs in theapplication. That is, one of the contributions this paper makes is to distinguish between policy33
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and mechanism. In particular, it shows how the conversation abstraction can be provided in thecommunication system at little cost and how it can be used to implement various application-dependent communication and synchronization paradigms.Psync is a low-level IPC protocol that implements the conversation abstraction in a distributedenvironment. Psync can be built directly on an unreliable communications network at little cost.This is because messages are sent asynchronously, extra protocol messages are only exchanged inthe case of failure, constant-time algorithms are used for manipulating the context graph, and theamount of timing information sent with each message is insigni�cant. Experiments substantiatethis claim: Psync's performance falls between that of a simple datagram protocol (UDP) and avirtual circuit protocol (TCP).Our experience using conversations suggests that Psync, taken together with a collection oflibrary routines, o�ers a simple and elegant solution to the communication needs of a broad spec-trum of distributed applications. We believe this is due to the fundamental nature of the partialordering of messages in interprocess communication. The context graph not only provides a power-ful mental tool for thinking about other protocols, but also provides a sound programming base forimplementing them. For example, distributed application do not have to pay for a total ordering ofmessages when a partial ordering is su�cient. As demonstrated by the replicated object example,being able to inspect the context graph allows the application chose the partial order when it issu�cient, yet synchronize by waiting for a message to stabilize when a total order is necessary.This information is not made available by other single mechanism.Finally, because of the way Psync automatically distributes the history of a conversation overmultiple hosts, it lends itself to building applications that are able to recover from processor failures.The storage demands of such a preserving this history over long periods of time are signi�cant,however. For example, to support applications that do not need to recover from processor failuresthe current implementation stores only those messages that have not yet become stable. In contrast,an implementation that supports participant reintegration must store the entire context graph.Although the messages in the graph can be o�-loaded to non-volatile storage, this still involves asigni�cant cost. Our belief that the mechanism should be separated from the policy argues that theimplementation should allow the application to specify to what extent the context graph should bepreserved rather than having the storage policy mandated by the implementation. We will maintainthis philosophy as we extend the implementation of Psync to support the participant reintegration.34
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